Reinforcement Learning in Cancer Research: Optimizing
the p53-Mdm2 Feedback Loop

Indrajeet Roy

Department of Electrical and Computer Engineering, Northeastern University
roy.i@northeastern.edu

Introduction

MDP for the p53-Mdm?2 negative feedback loop network consists of 4 components/genes, represented in the state
vector s = [ATM, p53, Wpi, MDM2]T. At any time, the state value of each gene can be: 0 (OFF) and 1 (ON).

S = {[0,0,0,0]",[0,0,0,1)",[0,0,1,0]",[0,0,1,1]",...,[1,1,1,0]", [1,1,1,1]"}
A = {[0,0,0,0]",[1,0,0,0]",[0,1,0,0]",[0,0,1,0]",[0,0,0,1]"}

The state transition probability equation is defined as:
sy =C-(sp_1®ak_1) Dny
Where:
e s; is the state vector at time k.

e C is the connectivity matrix that defines the relationship between states.

ay_1 is the action vector applied at time k — 1 affecting the state transition.

ny is the state transition noise vector that introduces randomness into the transition.

@ is the XOR operation used for combining the state vector and action vector as well as adding the noise
vector.

The transition matrices, representing the probability of moving from any state to other states under different control

inputs is defined as:
(M(a))ij — pHSi—(CSi@a)Hl (11— p)4—|\si—(CS¢€Ba)H1

where ||v|jy =), [v(4)] is the 1-norm, summing the absolute values of the elements of the vector v.

The reward function R(s,a,s’) is defined as:
R(s,a,s’) = 5s'(1) 4+ 5s'(2) + 55'(3) + 5s'(4) — |a

where |a| sums the absolute value of the elements of the action vector a. The activation of each gene contributes a
reward of +5, and actions as to as incur a cost of —1.

Model Based Algorithm Results

Value Iteration

Matrix-form Value Iteration for discount factor v = 0.95, convergence threshold 6§ = 0.01, and noise parameter
p=0.05

Optimal policy 7* : [2,2,2,2,2,2,2,2,3,2,2,2,4,2,2,2]

Average activation of genes, AvgA over 100 episodes under the obtained optimal policy: 2.84420
Average activation of genes, AvgA over 100 episodes under the no control policy: 0.49355

Number of Iteration Steps: 142
Matrix-form Value Iteration for discount factor v = 0.95, convergence threshold § = 0.01, and noise parameter
p=0.2

Optimal policy 7* : [2,2,2,2,2,2,2,2,3,2,2,2,4,2 2, 2]

Average activation of genes, AvgA over 100 episodes under the obtained optimal policy: 2.3942
Average activation of genes, AvgA over 100 episodes under the no control policy: 1.2607
Number of Iteration Steps: 138

Matrix-form Value Iteration for discount factor v = 0.95, convergence threshold 6§ = 0.01, and noise parameter
p=0.45

Optimal policy 7* : [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
Average activation of genes, AvgA over 100 episodes under the obtained optimal policy: 1.90165
Average activation of genes, AvgA over 100 episodes under the no control policy: 1.88935

Number of Iteration Steps: 135
Matrix-form Policy Iteration for discount factor v = 0.95, convergence threshold ¢ = 0.01, and noise parameter
p =0.05

Optimal policy 7* : [2,2,2,2,2,2,2,2,3,2,2,2,4,2,2,2]
Average activation of genes, AvgA over 100 episodes under the obtained optimal policy: 2.3942
Average activation of genes, AvgA over 100 episodes under the no control policy: 1.2607

Number of Iteration Steps: 3

Policy Iteration

Matrix-form Policy Iteration for discount factor v = 0.95, convergence threshold ¢ = 0.01, and noise parameter
p=20.2

Optimal policy 7* : [2,2,2,2,2,2,2,2,3,2,2,2,4,2,2,2]

Average activation of genes, AvgA over 100 episodes under the obtained optimal policy: 2.3942
Average activation of genes, AvgA over 100 episodes under the no control policy: 1.2607
Number of Iteration Steps: 3

Matrix-form Policy Iteration for discount factor v = 0.95, convergence threshold § = 0.01, and noise parameter
p=0.45

Optimal policy 7* : [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
Average activation of genes, AvgA over 100 episodes under the obtained optimal policy: 1.9138499999999998
Average activation of genes, AvgA over 100 episodes under the no control policy: 1.9044500000000002

Number of Iteration Steps: 1

Analysis

The optimal policy is sensitive to the level of noise in the system.At lower noise levels (p = 0.05 and p = 0.2),
the system’s response to control actions is more predictable and consistent.The Optimal policy for lower noise
levels suggesting control actions is effective in controlling/perturbing the system towards the objective all active
component state ([1,1,1,1]).The consistency of the optimal policy from (p = 0.05) to (p = 0.2) highlights the
strategy’s robustness, effectively maintaining its effectiveness despite an increase in noise.

For p = 0.05, the AvgA under the optimal policy is significantly higher in comparison to the AvgA under the no
control policy, indicating that system is more controllable by strategic actions, increasing gene activation rates. The
higher AvgA also suggests that the benefits of control actions are higher in comparison to the cost of implementing
the control actions. The AvgA computed for p = 0.2) decreases in comparison to p = 0.05, both under the optimal
policy and no control policy, indicating that the increased noise negatively impacts the system’s ability to sustain
high levels of gene activation and controllability.

At higher noise levels (p = 0.45), the effectiveness of control actions reduces due to increased unpredictability in
the system’s behavior and the optimal policy shifts towards not taking any action. The noise introduces significant
variability to the system that the effect of any control action is reduced, making it impractical to attempt any
control action.

The AvgA computed for (p = 0.45) decreases in comparison to (p = 0.05 and p = 0.2) and is nearly the same under
both the optimal policy and no control policy highlighting the reduced effectiveness of control actions.At high noise
levels, control becomes less effective, and the system’s natural dynamics influence the system behavior more.

The obtained policies are the same across all tested noise levels for both policy iteration and value iteration.Both
policy iteration and value iteration effectively identify the same optimal policies for controlling the gene regulatory
network under various noise conditions but policy iteration highlights an advantage in terms of convergence speed,
requiring fewer iteration steps to compute the optimal policy.

Model Based Algorithm Results

Q-Learning

a2 a2 a2 a2 a2 a2 a2 a2 al a2 al a2 al a2 al a2
a2 a2 a2 a2 a2 a2 a2 a2 al a3 al a2 al a2 a2 a2
a2 a2 a2 a2 a2 a2 a2 a2 a3 a2 al a2 al a2 a2 a2
a2 a2 a2 a2 a2 a2 a2 a2 al al a2 a2 al a2 al a2
a2 a2 a2 a2 a2 a2 a2 a2 al al al a2 al a2 a2 a2
a2 a2 a2 a2 a2 a2 a2 a2 al a2 al a2 al a2 al a2
a2 a2 a2 a2 a2 a2 a2 a2 al al al a2 al a2 al a2
a2 a2 a2 a2 a2 a2 a2 a2 al a2 al a2 al a2 al a2
a2 a2 a2 a2 a2 a2 a2 a2 al al al a2 al a2 a2 a2
a2 a2 a2 a2 a2 a2 a2 a2 al a2 al a2 al a2 a2 a2

Average accumulated reward

12

11 4

10 4

T T T T T
0 100 200 300 400 500
Episode

Figure 1: Average accumulated reward (in 10 independent runs) w.r.t episode number for Q-Learning

SARSA

a2 a2 a2 a2 a2 a2 a2 a2 a3 a3 al a2 al a2 a2 a2
a2 a3 a2 a2 a2 a2 a2 a2 al a2 a2 a3 al a2 a2 a2
a2 a2 a2 a2 a2 a2 a2 a2 al a2 a3 a2 al a2 a2 a2
a2 a2 a2 a2 a2 a2 a2 a2 al a2 a2 a2 al a2 a2 a2
a2 a2 a2 a2 a2 a2 a2 a2 al a3 al a2 al al a2 a2
a2 a2 a2 a2 a2 a2 a2 a2 al a3 al a2 al a2 a2 a2
a2 a3 a2 a2 a2 a2 a2 a2 al a2 al a2 al a2 a2 a2
a2 a2 a2 a2 a2 a2 a2 a2 al a2 al a2 al a2 a2 a2
a2 a2 a2 a2 a2 a2 a2 a2 al a3 al a2 al a2 a2 a2
a2 a2 a2 a2 a2 a2 a2 a2 al a3 al a2 al a2 al a2

Average accumulated reward

12

11 4

10 +

SARSA-lambda (1))

a2
a3
a2
a2
a3
a2
a3
a3
a2
a2

T
100

T
200

Episode

T
300

T
400

T
500

Figure 2: Average accumulated reward (in 10 independent runs) w.r.t episode number for SARSA

a2
a3
a2
ad
a3
al
a2
a3
al
a3

al
a3
a3
a2
a2
a3
a2
a2
a2
a2

a2
a2
a2
a2
a2
a3d
a2
a2
a2
a3

a2
al
a2
a2
al
a2
al
a2
a2
a2

a2
a2
a2
a2
a2
a2
a2
a2
al
a2

a2
a2
al
a2
a2
a2
al
a2
al
a2

al
al
al
al
al
al
al
a3
al
a3

a3
ad
al
al
al
al
al
al
al
al

a2
a2
a2
a2
a3d
a2
a2
a2
ad
a2

a2
a2
a3
ad
a2
a2
a3
a2
ad
a3

a2
a3
a2
a3
a2
a2
a3
a2
a2
al

al
al
al
al
a2
al
al
al
ad
al

a2
a2
al
a2
a2
a2
a2
a2
al
a2

a2
al
al
al
al
al
al
a2
a2
al

a2
a2
a2
a2
a2
al
a2
a2
al
al

Average accumulated reward

T T T T T
0 100 200 300 400 500
Episode

Figure 3: Average accumulated reward (in 10 independent runs) w.r.t episode number for SARSA ()

Actor-Critic

a2 a2 a3 a3 a2 a2 a2 a2 al a2 a2 a2 a3 al a2 a2
a3 a2 a3 a2 a2 a2 a2 a2 a3 a2 a2 a2 al a2 al a2
a2 a2 a3 a2 a2 a2 a2 a2 a3 a3 a3 a2 a3 a2 a2 a2
ad a3 a2 a2 a2 a2 a2 a2 a3 a3 al a3 al a2 al a2
a2 a3 a3 a3 a2 a2 a2 a2 a2 a2 a3 a2 a3 a2 a2 a2
a2 a2 a3 a2 a2 a2 a2 a2 al al a3 a2 a3 al a2 a2
a2 a2 a2 a2 a2 a2 a2 a2 al a3 al a2 a3 a2 al a2
a2 a3 a2 a2 a2 a2 a2 a2 a3 a3 a2 a2 a3 a2 a2 a2
ad a2 a2 a2 a2 a2 a2 a2 a3 a3 a3 a2 al a2 a2 a2
a2 a3 a2 a2 a2 a2 a2 a2 a2 a2 a3 a2 al a2 a2 a2

Average accumulated reward

11.5 4

11.0 +

10.5 +

10.0 ~

9.5 1

9.0 A

T T T T T
0 100 200 300 400 500
Episode

Figure 4: Average accumulated reward (in 10 independent runs) w.r.t episode number for Actor-Critic

Analysis

12

10 ~

Average accumulated reward

4_
2 1 :

= Q-learning

—_— SARSA

SARSA-Lambda

— Actor-Critic

0 T T T T T
0 100 200 300 400 500

Episode
Figure 5: Average accumulated reward (in 10 independent runs) w.r.t episode number for all algorithms

Q-learning is an off-policy algorithm that estimates the value of the optimal policy by learning the action-value
function.This estimation process is carried out regardless of the agent’s current actions, which enables Q-learning
to evaluate the potential of actions that have not been taken based on observed outcomes allowing the Q-learning
algorithm to discover the optimal policy, even in environments high stochasticity environments.In the initial learning
phase (Episode 0-100), the Q-learning curve displays a steep ascent, suggesting that the algorithm is rapidly
identifying actions that lead to high rewards and making significant progress towards the optimal policy. This is
indicative of Q-learning’s preference of exploitation of gathered information in comparison to exploration to make
substantial policy improvements without being constrained by the policy defined exploratory actions.During the
mid-learning phase (Episode 100-300), the Q-learning curve’s slope decreases,highlighting a reduction in the rate
of improvement as the algorithm balances exploration (new actions to evaluate) and exploitation (using the known
best actions) to stabilize converging policy.During the late learning phase (Episode 300-500), the Q-learning curve
plateauing indicates that the Q-learning algorithm has converged to a stable policy that is close to the optimal
policy for the stochastic environment and reward function.

From the graph, it can be observed that during the initial learning phase (Episodes 0-100), the SARSA curve
exhibits a quick ascent. This highlights the on-policy nature of SARSA, which updates its policy based on the
actions taken, including exploratory actions. The conservative rise of the SARSA curve suggests a cautious learning
strategy of on-policy algorithms, which directly integrate actual exploratory actions into policy updates.In the
mid-learning phase (Episodes 100-300), the SARSA algorithm continues to make progress with a slowing rate of
improvement, indicative of the algorithm stabilizing and converging toward a policy that balances exploration with
exploitation.The leveling off of the SARSA curve below the Q-learning curve suggests that the SARSA algorithms
on-policy approach leads to a more conservative policy, possibly due to the reinforcement of sub optimal actions

taken during exploration. The SARSA algorithm accumulates fewer rewards compared to a more exploitative strategy
such as Q-learning, as the algorithm utilizes exploration for policy updates.During the late learning phase (Episode
300-500), the SARSA curve plateaus, indicating the algorithm has converged to a reliable stable policy, but not an
optimal policy as the accumulated reward is not maximized.

From the graph, it can be observed that during the initial learning phase (Episodes 0-100),the SARSA(()\)) curve
demonstrates a moderate ascent and then plateaus, indicating a relatively slower learning process due to the
SARSA(())) algorithms on-policy nature which promotes balance of exploitation and exploration.During the mid-
learning phase (Episode 100-300),the SARSA((A)) curve indicates a relatively conservative update strategy due
to the leveling off a lower accumulated reward suggesting a limitation or ineffectiveness of the eligibility traces
in providing optimal action information from past experiences.In the late learning phase (Episodes 300-500),the
SARSA(())) plateaus suggesting the algorithm’s sensitivity to the stochasticity of the environment, leading to less
optimal policy.

Actor-Critic algorithm utilizes the benefits of both on-policy and off-policy approaches by combining value function
approximation (critic) with policy optimization (actor) to achieve a balance between the flexibility of policy-based
method and the stability and efficiency of value-based method.During the initial learning phase (Episode 0-200), the
Actor-Critic curve is similar to the Q-learning curve highlighting rapid increase in the accumulated reward. This
indicates the actor’s capability to quickly adapt policy based on the critic’s accurate value assessment of policy’s
performance, enabling the actor to adjust the policy efficiently, effectively balancing exploitation and exploration of
the environment.During the mid learning phase(Episode 100-300)the Actor-Critic algorithm continues to improve
which indicates that the actor is refining policy based on new information provided by the critic adjusting policy
in response to long-term rewards.In the late learning phase (Episodes 300-500), the Actor-Critic curve indicates
convergence towards the optimal policy with highest average accumulated reward, suggesting that it has determined
the most optimal policy for the stochastic environment. The actor-critic algorithm is able to perform well in a
complex and stochastic environment as it can make incremental changes and refine policy based on the actor critic
feedback loop.

