
Data Distribution

For C = 4 classes with uniform priors, parameters for the Gaussian Mixture Model:

µ0 =

00
0

 µ1 =

2.50
0

 µ2 =

50
0

 µ3 =

7.50
0


Σ0 =

 1 0.3 1.4
0.3 1 0.3
1.4 0.3 7

 Σ1 =

 1 −0.4 −0.7
−0.4 1 −0.4
−0.7 −0.4 3


Σ2 =

 1 0.4 0.7
0.4 1 0.4
0.7 0.4 3

 Σ3 =

 1 −0.3 −1.4
−0.3 1 −0.3
−1.4 −0.3 7


MLP Structure

MLPClassifier from scikit-learn neural network module is utilized as it is modular, flexible, and easy to combine with
other scikit-learn functions for creating and training neural networks for classification tasks.

• 2-layer MLP (one hidden layer of perceptrons): MLPClassifier supports the creation of multilayer perceptrons
(MLP) with customizable configurations for the number of hidden layers and the number of neurons in each layer. By
default, the MLPClassifier is configured with a single hidden layer, but this configuration can be changed using the
hidden layer sizes parameter. Setting the parameter hidden layer sizes to [(p,) for p in counts] enables the
creation of an MLP with a single hidden layer containing p perceptrons, where p varies based on the values in the provided
list counts. This allows for experimenting with different neural network architectures, as adjusting the hidden layer sizes

parameter allows for the exploration of various model complexities (number of perceptrons) and the determination of the
most effective structure through cross-validation.

• Activation function: The activation parameter of MLPClassifier enables the selection of an activation function for
the hidden layers. MLPClassifier has limitations in the variety of activation functions it supports, notably not natively
supporting smooth-ramp activation functions like ISRU, Smooth-ReLU, or ELU. The ReLU (Rectified Linear Unit) function
is chosen for its computational efficiency and faster convergence in neural network training. relu is preferred because it
involves simpler mathematical operations compared to sigmoid or tanh functions, resulting in faster computation during
both the forward and backward passes of training. It also promotes sparse activation, where only a subset of perceptrons
are activated in any given layer, enhancing computational and memory efficiency.

• MLP output layer with softmax function: In multi-class classification tasks, MLPClassifier automatically applies
the softmax function at the output layer. This default behavior ensures that the output for each class is expressed as
a probability and that the sum of these probability values for all classes equals 1 for any given input. This feature is
important in multi-class classification as it supports the proper normalization of outputs, making them interpretable as
probabilities.

1



Generate Data

Figure 1: Training dataset with 100 samples Figure 2: Training dataset with 500 samples

Figure 3: Training dataset with 1000 samples Figure 4: Training dataset with 5000 samples

2



Figure 5: Training dataset with 10000 samples Figure 6: Validation dataset with 100000 samples

Theoretically Optimal Classifier

In the context of uniform prior probabilities, the minimum-probability-of-error classification MAP rule simplifies to the Maximum
Likelihood (ML) rule. This approach involves calculating the likelihoods for each class using the Gaussian pdf, with class-specific
mean vectors and covariance matrices. The decision rule then selects the class that maximizes the likelihood for each data point.
The classifier’s performance is assessed by comparing predicted and actual labels, determining the empirical probability of error.
The probability of error on the test sample set using true data is approx. 13.35%. The Pr(error) value indicates the effectiveness
of the selected parameters and validates the parameters as the classification rule for the true data pdf achieves between 10%–20%
probability of error.

Model Order Selection

To determine the optimal number of perceptrons for each training set, K-fold cross-validation is utilized with the objective of
minimizing classification error probability.This process involves the testing of various model configurations to identify the optimal
one that minimizes the classification error probability. The process is implemented utilizing GridSearchCV from scikit-learn.
GridSearchCV is a comprehensive tool for hyperparameter tuning which searches across a predefined grid of parameters, evaluat-
ing the performance of each model configuration through K-fold cross-validation.This provides an efficient framework for model
selection and optimization, ensuring the most effective model structure is chosen.

• Grid Search: For models like MLPClassifier, GridSearchCV (Grid Search Cross-Validation) is utilized for hyperpa-
rameter tuning and model selection. It performs an exhaustive search over a predefined range of hyperparameters, testing
multiple combinations to determine the optimal number of perceptrons. GridSearchCV assesses all possible combinations of
perceptron counts across various model configurations. For each hyperparameter set, it fits a model to the training data and
evaluates its performance using cross-validation. This approach ensures comprehensive exploration of the hyperparameter
space and identification of the most effective model configuration based on the evaluation function.

The grid search process optimizes the number of perceptrons and the regularization strength (alpha) based on the size of
the training dataset. This approach is designed to align model complexity (number of perceptrons) with the volume of
available data. Smaller datasets may lead to overfitting with overly complex models, while larger datasets might require
more complex models to effectively capture patterns in the data.

– Perceptron Range: The range of perceptrons tested for each MLP is chosen based on the size of the training set
to balance model complexity with the number of data samples which is crucial for preventing overfitting in smaller
datasets.

3



– Regularization: The alpha parameter of MLPClassifier is a regularization term. A range of alpha values are
evaluated during the grid search to determine the optimal level of regularization, aiming to minimize overfitting while
allowing the model to learn the patterns in the data.

These specific hyperparameter ranges ensure that the MLP is appropriately calibrated to the size of the training set, opti-
mizing its ability to learn effectively without overfitting.The logarithmic spacing ensures a wide and balanced exploration
of the regularization strength suitable for various data sizes.

– N ≤ 500:

∗ No. of Perceptrons Range: [8, 16, 32] are selected to limit overfitting. Smaller models with fewer parameters are
better suited for smaller datasets.

∗ Alpha Range: np.logspace(-4, -2, 3) corresponds to [10−4, 10−3, 10−2]. Higher regularization provides a stronger
penalty against model complexity.

– 500 < N ≤ 2000:

∗ No. of Perceptrons Range: [32, 64, 128, 256] allow for greater model complexity.

∗ Alpha Range: np.logspace(-5, -3, 3) corresponds to [10−5, 10−4, 10−3], providing slightly lower regularization
strengths, enabling more complexity.

– N > 2000:

∗ No. of Perceptrons Range: [128, 256, 512] provide a wider range of complexity options.

∗ Alpha Range: np.logspace(-6, -4, 3) corresponds to [10−6, 10−5, 10−4], further reducing the regularization strength
for more flexibility.

• Objective function: The scoring parameter of GridSearchCV is utilized for determining how the performance of each
model configuration is evaluated during cross-validation. To minimize the classification error probability, it’s effective to
inversely maximize accuracy, as error probability and accuracy are inversely related (Error Probability = 1 - Accuracy).
By setting the scoring parameter to accuracy, GridSearchCV will evaluate and compare models based on their accuracy
scores. This approach supports the objective of minimizing error probability via maximizing accuracy. Using accuracy

as the scoring metric in GridSearchCV ensures that the model selection process is based on minimum classification error
probability.

• K-Fold Cross-Validation: Evaluation of each hyperparameter combination in GridSearchCV is conducted through k-
fold cross-validation instead of relying on a single train-test split. This method involves training and evaluating the model
k times, each time using a different subset of the dataset for validation, ensuring the model’s performance is validated
across multiple subsets, improving the accuracy of the evaluation process and reducing the likelihood of overfitting. The
performance evaluation metric for each model configuration is the average accuracy obtained across all k folds. The
configuration that estimates the highest average accuracy indicating the lowest classification error probability is selected
as the most optimal.

Analysis

Conducting three separate runs of model selection with the MLP on different datasets generated using the same parameters
provides an optimized and comprehensive evaluation of the MLP’s performance. This ensures that the chosen model is not
overfitting to a specific dataset, but effectively capturing the general properties of the data distribution. Additionally, multiple
executions also assesses the generalization ability of the MLP as the consistency of the MLP’s performance across these varied
runs highlights the reduced effect of the specifics of data generation such as random seed variations on performance.This confirms
that the selected model is well-suited for diverse datasets derived from the same parameters.

P(Error) on test set using the true data pdf: 0.1337

Training Set Size No. of Perceptrons P(error)
100 8 0.6620
500 32 0.4692
1000 128 0.1756
5000 256 0.1454
10000 256 0.1327

4



P(Error) on test set using the true data pdf: 0.1335

Training Set Size No. of Perceptrons P(error)
100 16 0.6440
500 32 0.4576
1000 128 0.1714
5000 512 0.1392
10000 512 0.1332

P(Error) on test set using the true data pdf: 0.1336

Training Set Size No. of Perceptrons P(error)
100 16 0.6360
500 32 0.4516
1000 256 0.1746
5000 512 0.1325
10000 512 0.1302

5



• Accuracy improvement with more data: As the dataset size increases, the error probability generally decreases. With
a larger dataset, the model has greater capacity to accurately estimate the true data distribution, leading to more precise
predictions. The overall decrease in error probability with an increase in training set size is an expected outcome as more
data samples provide a more comprehensive representation of the data distribution, improving the learning algorithm’s
ability to generalize effectively.

• Increasing model complexity for larger datasets: For smaller datasets (100 and 500 samples), a lower number of
perceptrons 8 and 32 is optimal. This indicates that a simpler model is sufficient for capturing the essential patterns in the
data while avoiding overfitting. As the dataset size increases, there is a shift towards more complex models, with a higher
number of perceptrons (128, 256, 512) being selected. This trend is expected and suggests the larger datasets provide
enough data to support and validate the complexity of bigger models, effectively reducing the risk of overfitting. The
trend of increasing model complexity (number of perceptrons) with increasing dataset size improves the model’s learning
capability while ensuring generalization.

• Regularization and complexity control: The decreasing trend in error probability with increasing training dataset
size suggests that the regularization variation (via the alpha parameter of MLPClassifier) complexity variation for the
number of perceptrons (via the hidden layer sizes parameter of MLPClassifier) according to number of data samples
are working effectively. The models are complex enough to capture the necessary patterns but regularized to prevent
overfitting.

• Close proximity to theoretical optimal performance: The error probability values, particularly for larger training
sets, are closer to the theoretical p(error) of the optimally designed classifier, which is based on the true data pdf. This
proximity in error rates indicates that the MPL configured with the selected hyperparameters, is efficiently approximating
the optimal decision boundary as more data samples are available.The convergence of empirical probability of error towards
the theoretical probability of error derived from the true data pdf highlights the effectiveness of the model tuning and the
cross-validation process used in selecting the optimal level of model complexity.

• Consistency across execution runs: The consistency of error probability values across different runs with different
seeds for the random number generation indicates stability in the model selection process. It suggests that the results are
not based of particular random initializations or splits of the data.

Model Training

• Maximum Likelihood Estimation: MLE is used to estimate the model parameters (weights) that make the observed
data most probable. In the context of neural networks, MLE aims to find the weights that essentially maximize the
likelihood of observing the training data. In classification tasks, this translates into minimizing the cross-entropy loss,
which is effectively the same as maximizing the log-likelihood of the correct labels.Cross-entropy loss measures how well
the predicted probability distribution aligns with the true data distribution.A lower cross-entropy loss indicates better
model performance as it suggests a smaller divergence between the predicted probabilities and the actual labels.

6



The MLP is trained using an optimization algorithm to minimize cross-entropy loss, effectively maximizing the log-likelihood
of the training data under the model. Iterative reduction of cross-entropy loss using the optimization algorithm aligns the
model parameters more closely with the underlying data distribution.

– Optimization algorithm used for training: The solver parameter of MLPClassifier specifies the optimization
algorithm used for training the MLP. In neural network training, the solver essentially updates the weights of the
network based on the loss function, which is the cross-entropy loss for classification tasks.

The solver parameter is set to adam, indicating that the adam optimization algorithm is used for training. adam is
an optimization algorithm that adjusts the learning rate for each weight in the neural network individually, resulting
in more efficient weight updates, leading to faster convergence, especially in complex networks or large and variable
datasets. It adjusts the weights iteratively based on the training data. By continuously updating the learning rates
and utilizing the information from previous gradients, it minimizes the loss function more effectively compared to
algorithms with a constant learning rate.

This process of continuous adaptation and optimization ensures that the MLP effectively learns from the training
data, with the goal of achieving the lowest possible cross-entropy loss (or highest log-likelihood).

– Computing Log-Likelihood: The log loss function from scikit-learn computes and provides a measure of the
cross-entropy loss, which is minimized during training. As the optimization algorithm used in training is designed to
minimize rather than maximize cost function, maximizing log-likelihood is reformulated to minimizing the negative
log-likelihood (cross-entropy loss). Minimizing negative log-likelihood is achieved by negating log loss.A lower
cross-entropy loss corresponds to a higher likelihood of the model accurately representing the observed data.Negating
log loss essentially allows likelihood maximization using optimization algorithm functions which minimize the cost
function.

• Mitigation of Local Optima in Training: Neural network training aims to find the global minimum of a loss function
which represents the optimal solution.In the context of MLP, there is complexity and potential for overfitting in multilayer
perceptrons, which results in multiple local minima. These local minima can trap the training process, preventing it from
reaching the global minimum.

Random reinitialization is an effective strategy to overcome the limitations posed by local minima.The approach is to
explore different parts of the parameter space (weights of the neural network) to improve the likelihood of finding a more
globally optimal solution. The MLP training process is executed multiple times with different random initial values for
the model’s weights. Each initialization leads to a different trajectory through the parameter space during training and
by exploring the parameter space, the training process is less likely to be stuck in local optima, increasing the chances of
approaching the global minimum.

After each training round, the performance of the resulting model is evaluated in terms of the log-likelihood of the training
data.A higher log-likelihood implies a better fit to the training data, suggesting that the model has potentially reached a
more optimal point in the parameter space.

Performance Assessment

• Estimation of class posterior probabilities: MLPClassifier utilizes a softmax function to convert the output layer’s
scores into probabilities by normalizing these scores into a probabilistic distribution.This normalization ensures the output
is interpretable as probability distributions over classes, allowing for a direct estimation of class posterior probabilities. The
class posterior probabilities are the likelihoods of each class given the input features, conditioned on the current parameters
(weights and biases at each layer adjusted during training) of the MLP.

• Learning process: During training, the MLP learns to approximate these posterior probabilities based on the distribution
observed in the training data.The learning process is essentially an optimization problem, where the algorithm iteratively
adjusts the parameters (weights and biases) through backpropagation and optimization algorithms (like sgd or adam) to
minimize cross-entropy loss (difference between the predicted probabilities and the actual class distributions observed in
the training data).

• Generalization to unobserved data: For validation test dataset, the trained MLP applies parameters learned during
training to new, unseen data to estimate probabilities for each class. The ability of the model to accurately estimate class
probabilities on test data indicates the accuracy of the MLP training and application of the learned information to classify
the new data samples.

7



• Application of MAP decision rule: Post-training, the MLP functions as an estimator for the posterior probabilities of
the classes. The predict function of MLPClassifier applies the MAP decision rule for classification, selecting the class
with the highest posterior probability for each input sample.

P(Error) on test dataset using the true data pdf: 0.1337
Training Set Size P(error) Accuracy

100 0.1669 0.8331
500 0.1545 0.8455
1000 0.1468 0.8532
5000 0.1385 0.8615
10000 0.1363 0.8637

P(Error) on test dataset using the true data pdf: 0.1335
Training Set Size P(error) Accuracy

100 0.2183 0.7817
500 0.1566 0.8434
1000 0.1486 0.8514
5000 0.1395 0.8605
10000 0.1372 0.8628

P(Error) on test dataset using the true data pdf: 0.1336

8



Training Set Size P(error) Accuracy
100 0.2001 0.7999
500 0.1447 0.8553
1000 0.1426 0.8574
5000 0.1376 0.8624
10000 0.1365 0.8635

• Decreasing probability of error with increasing training dataset size: Expected observation that the error proba-
bility in machine learning models, including MLPs, will generally decrease as the number of training data samples increases.
This aligns with the theoretical understanding that more data samples provides a better representation of the data dis-
tribution, allowing the model to develop a more accurate and reliable mapping from inputs to outputs. Additionally, the
increased diversity in the data samples may assist in reducing biases and overfitting, leading to a more optimal and accurate
model.

• Performance variability with fewer samples: Models trained with only 100 data samples show a higher variability in
performance, with probability of error values ranging from 0.1669 to 0.2183. This variability is due to the higher influence
of random variation and noise in limited training data, potentially leading to overfitting or underfitting.

• Training dataset size vs. model complexity: The complexity (number of perceptrons) of the MLP is optimally chosen
relative to the size of the training set to avoid overfitting.This optimal selection is highlighted as the models do not exhibit
a significant increase in error probability when transitioning from the training dataset to the test dataset. This suggests
that the MLP’s were not overfit to the training data during training. This suggests that the number of perceptrons is
optimal allowing the model to effectively learn the patterns during training.

• Model generalization: The models demonstrate good generalization capabilities, especially those trained with larger
datasets. This is highlighted by the error probability values closely aligning with theoretical error probability indicating
that the models are not overfitted to the training data and are capable of generalizing well to the new, unseen test dataset.

9


